Lie Groupoids: Representations & Equivalence

_

Lie Groupoids Review

$$G_{z}:=G_{1}\times G_{1}=\{g,h\}: s(g)=t(h)\}$$

 $F_{z}:=G_{1}\times G_{1}=\{g,h\}: s(g)=t(h)\}$
 $F_{z}:=G_{1}\times G_{1}=\{g,h\}: s(g)=t(h)\}$
 $G_{z}:=G_{1}=\{g,h\}: s(g)=t(h)\}$
 $G_{z}:=G_{1}=f_{z$

=>
$$R(q) := M \times_q M = \Im(x,y): q(x) = q(y) \Im$$
 Nomes the set of $Pr_2(\uparrow A) Pr_1$
 M $(x,y) \cdot (y,z) = (r,z)$
Conversely, a closed embedded equivalence relation
 $R \subseteq M \times M$ orbits are equivalence
is of this form. $Classes$

Example (Čech groupoid)
$$\{H_i\}_{i \in \mathbb{Z}}$$
 open cover of M
coproduct $\coprod U_K \cap U_\ell \ni (x, \ell, \kappa)$ with $x \in U_\kappa \cap U_\ell$
tornal disjons (f_ℓ)
which $\bigcup_{i \in \mathbb{Z}} U_i \ni (x, \ell, \kappa)$ with $x \in U_i$
 $(x, \ell, \kappa) : (x, \kappa) \rightarrow (x, \ell)$
 $(x, n, \ell) (x, \ell, \kappa) = (x, m, \kappa)$
 $(x, \ell, \kappa) = (x, i, i)$ $(x, \ell, \kappa)^{-1} = (x, \kappa, \ell)$
Example $E \rightarrow M$ vector bundle
The general linear groupoid is

$$GL(E) = \{T: E_x \xrightarrow{\sim} E_y | \text{ inear isomorphisms} : x, y \in M\}$$

$$f(T) = y \int J S(T) = x$$

$$M$$
Iso tropy at x is $GL(E_{\chi})$

$$\frac{\text{Def}}{\text{A left action of } G = (G_1 \times_6 G_1 \rightarrow G_1 \oplus G_0)}$$

on P with anchor/momentum 9 is a map

Note: $g: x \rightarrow y \Rightarrow g \rightarrow : q'(x) \rightarrow q'(y)$ $E_{x \text{ ample }} G_n := G_1 \times_{G_0} \dots \times_{G_0} G_1 \quad n \text{ com posable morphisms}$ $g \cdot (g_1, \dots, g_n) = (gg_1, \dots, g_n)$ action with momentum map $g(g_1, \dots, g_n) = t(g_1)$

Def A representation of
$$G = (G_1 \times_0 G_1 \rightarrow G_1 \oplus G_0)$$

is a linear left actin with momentum map
 $Q: E \rightarrow G_0$
a vector bundle, so for $Q: x \rightarrow y$,
 $Q: = : E_x \rightarrow E_y$
is linear.
Example M X M pair groupoid in which everything
 $I \downarrow j$
M
A representation is a trivial vector bundle
 $M \times C^n \rightarrow M$
Example A representation of $G \times M$ is
an equivariant vector bundle
 $(E \rightarrow M, d: G \times E \rightarrow E)$
i.e. $d(g)_i: E_x \rightarrow E_{gx}$ linear
 $S.l. d(g)_o d(h)_x = d(gh)_{ghx}$
Subsexuable M-Sab $\rightarrow f d$ representation of G

Subexample M = S*3 => f.d. representation of G Subexample G= 1 => vector bundle over M

Notions of Equivalence
Representations
up to havelogy
The notion of homomorphism of Lie groupoids stacky quales
is 'too strict' from some view points.

$$\Rightarrow$$
 replace isomorphisms by weaker forms of equivalence
Reall For categories, the notion of isomorphism
is too strict. Instead, if $F: C \rightarrow D$ is
a functor, it is an equivalence if naturel isom.
 $\exists G: D \rightarrow C$ s.t. $G \circ F \simeq \operatorname{id}$, $F \circ G \simeq \operatorname{id}$
 T
 F is fally faith full λ essentially surjective
i.e. Ecategories? is a 2-category
 $D \circ f$ A natural transformation $\varphi \Rightarrow \varphi$ between Lie groupoid
homomorphisms
is a smooth map $T: G_{\circ} \rightarrow H_{1}$ s.t.
 $G_{\circ} \xrightarrow{\Psi_{1}} H_{1}$ $T(\pi) : \varphi_{0}(\pi) \rightarrow \varphi_{0}(\pi)$
 $(\varphi) \xrightarrow{\Psi_{1}} \varphi_{1} \varphi_{1} \xrightarrow{\Psi_{2}} \pi \rightarrow \varphi \in G_{1}$ the square

$$\begin{array}{c|c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

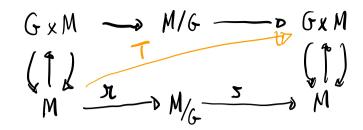
Def A morphism q: G - H of Lie group oids
is a strong equivalence if
$$\exists \psi: X - g$$

and natural transformations
 $\varphi \circ \psi \Longrightarrow id_{g}$, $\psi \circ \varphi \Longrightarrow id_{g}$ strong equivalence
weaker than is

$$T: \operatorname{id}_{M\times M} \Longrightarrow \operatorname{Pr}_{x_{o}} \quad T(x): x \longrightarrow x_{o}$$

$$\begin{array}{c} T(x) \\ x \xrightarrow{T(x)} \\ y \end{array} \qquad x_{o} \\ (& j \\ y \end{array}$$

$$\begin{array}{c} Y \xrightarrow{Y} \\ T(y) \end{array}$$



 $T(x) : \chi \rightarrow 5 \circ \pi(x) \Rightarrow T(x) x = 5 \circ \pi(x)$ $G \Rightarrow [5 \circ \pi(x)] = [x]$ $\Rightarrow \sigma[x] := 5 \circ \pi(x)$ Won't show 1. is a section of $M \xrightarrow{C.7} M/G$ the converse 2. is well - defined be cause π is a norphism of the groupoids $= \pi M \rightarrow M/G \text{ is the trivial principal bundle}$

fully faith ful & ess sur; works

Weat Equivalence

Def A morphism
$$q: g \rightarrow H$$
 of fie group oids
is essentially surjective if
 $G_{q}x_{s}H_{1} \rightarrow H_{1}$ to Pr_{2} is a surjective
 $\int A = \int f_{1} + H_{1}$ to Pr_{2} is a surjective
 $\int A = \int f_{1} + H_{1}$ to Pr_{2} is a surjective
 $\int A = \int f_{1} + H_{1}$ to Pr_{2} is a surjective
 $\int A = \int f_{1} + H_{1}$ to Pr_{2} is a surjective
 $\int (\forall \forall \in H_{0} = \exists x \in G_{0} = \exists h : q_{0}(x) \rightarrow \forall f_{1}$
 $\int f_{0}(x) \rightarrow f_{0}(x) \rightarrow f_{1}(x) \rightarrow f_{1}(x)$
A morphism $q: g \rightarrow H$ is fully first full if
 $Mor_{1}(x, \gamma) = \int f_{0}(x) + g_{0}(\gamma)$
 $\int f_{0}(x, \gamma) = \int f_{0}(x) + f_{0}(\gamma)$
 $G_{0} \times G_{0} \rightarrow H_{0} \times H_{0}$
A morphism is a weak equivalence if
it is fully first full & essentially surjective.

Note A Lie groupoid homomorphism M - pt x6
is recessarily trivial.
A Lie groupoid homomorphism Čech(U:) - pt x6
is a collection
$$Q_{K,e}: U_{K} \cap U_{\ell} \longrightarrow G$$

such that $Q_{K,e} \cdot Q_{\ell,m}(x) = Q_{K,m}(x)$
 $\forall x \in U_{K} \cap U_{\ell} \cap U_{m}$ Čech I-cocycle, principal
orbundle

Def Lie groupoids G. X are called
Morita equivalent if there is a third Lie
groupoid H' & weak equivalences

$$g^{2} \times \chi^{2} \chi$$

Proposition This is an equivalence relation

Def A <u>generalized morphism</u> $\mathcal{G} \rightarrow \mathcal{K}$ consists of a Lie groupoid \mathcal{K}' and homomorphisms $\mathcal{G} \not\propto \mathcal{K}' \not\sim \mathcal{Y}$ with \mathcal{G} on equivalence Prop Every generalized morphism $\mathcal{G} \rightarrow \mathcal{K}$ can be realized by a "Čech refinement" $\mathcal{G} \leftarrow \mathcal{G}_{SU:3} \rightarrow \mathcal{K}$ $U; ::G_{O}$

The Identify two generalized morphisms if they have a common refinement: $\begin{array}{c}
\mathcal{H}^{\mu} \\
\mathcal{H$ The resulting category is equivalent to the cuteyony of stacks on the site Man of smooth manifolds (sheaves on Man with values in group oids)

Orb:Fold Aside