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RepresentationsNotions of Equivalence
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The notion of homomorphism of Lie groupoids stockyquota

is toostrict from some viewpoints

replace isomorphisms by weaker forms of equivalence
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Liegroup proper
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Def lie groupoid G H are called

Moritaequivalent if there is a third hie

groupoid H weak equivalences
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Proposition This is an equivalence relation
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Th Identify two generalized morphisms if
they have a common refinement
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The resulting category is equivalent
to the category of stacks on the site Man
of smooth manifolds sheaves on Man
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Def A lie groupoid is called étate when
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Ithink every orbifold is locally isomorphic to
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Th let Cy be the category of left G torsors

There is a functor

Cg a Man

given by mapping re P B to B
This is a stack over Man

The stacks Cg Cy are isomorphic

if G H are Morita equivalent


