The Cohomology of any space
$$H^{*}(X)$$
 is a commutative
algebra under cap product.
 \Rightarrow useful to distinguish spaces up to honology
Example: $RP^{2} \times 5^{1} \times 5^{2}$

Put cup product is not stable
Claim
$$H^*(ZX)$$
 has trivial cup product for any space X
 \Rightarrow useless to distinguish spaces up to stable homotopy
However, a combination of hyber cup products is; Steenvod squares
Note cup product on $H^*(X)$ is induced by homotopy commutative
product on $(Scy singular)$ codowns $C^*(X)$
 $C^*(X) \overset{\circ}{=} C^*(X) \overset{\circ}{\simeq} C^*(XXX) \overset{\Lambda^*}{\to} C^*(X)$
 \exists chain homotopy $U_1: U \circ T \simeq U$ of degree -1
 3_{Hip}
 $eq. Habe $C^*(X)$, $a \lor b - b \lor a = d(a \lor_1 b) + da \lor_1 b + a \lor_2 db$$

Continue
$$U_i: U_{i} \to V_{i}$$
 des -i
Could define $\alpha \in H^n(X) \Rightarrow Sq^{n-i}(\alpha) := \alpha V_i \alpha$ Well-defined

$$\frac{\text{Example } H^{x}(\mathbb{RP}^{\infty}) \simeq \mathbb{F}_{2}[x]}{|\mathcal{P}|=1}$$

$$Sq^{0}(x) = x \quad Sq'(x) = x^{2}$$

$$Sq^{n}(x) = x \quad Sq'(x) = x^{2}$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

$$Sq^{n}(x) = 0 \quad \text{if } h \ge 1$$

Can now distinguish IRIP & S'vs 2 stably

Pecall the Steen rad algebra:
a Z - graded IFz - algebra with degree
$$n \in \mathbb{Z}$$
 part
 $A_n = \pi_n \operatorname{Map}(H F_2, H F_2)$
 $degree = H^n(H F_2)$
 $= \lim_{M} H^n(K(\mathbb{Z}/z, m))$
 $= \{ \text{stable cohomology operations of degree } n^2 \}$
 $A = \frac{F_2 \sum S_1 / S_1^2 / S_1^3 / ... }{A dean relations}$
 $Def An augmentation of an F_2 - oldebra A is an
algebra homomorphism $\mathcal{E} : A + IF_2$
 T/\mathcal{E} augmentation ideal is Ker \mathcal{E}
 $We say a \in A$ is decomposable if $a \in (Ker \mathcal{E})^2$
 $Example group algebra A = IF_2 [G_1] finite
with $\mathcal{E}(g) = 1$ $\forall g$$$

Def A Z-groded
$$[F_z - algebra A is connected if $A_n = 0$ for $n < 0$ and $A_a = |F_z|$.$$

Note A connected algebra is augmented by projection onto Ao.
Example Steenrod algebra
$$d$$
 is connected.
Prop Sqⁿ $\in d$ is decomposable $\in n \neq 2^{i}$

If X is a spectrum, the classical Adams spectral sequence systications
interval Etypeology "cohordopical" module grading

$$E_2 = E_{x} + \left(H^*(X), F_2 \right) \implies JT_{t-s}(X)_2^{A}$$

 $A - module via augmentation $Z_2 = Z_2$ conjustion:
 $Z_1 = Z_2 = -C_2 + C_2^{A}$
When $s \ge 1$, $E_{x} + C_1^{A}(M,N)$ can be represented $(Z_2/2^{K})_2^{A} = Z_2/2^{K}$
by $C \times tensions$
 $O \rightarrow \Xi^{\dagger} N \rightarrow P_1 \rightarrow \dots \rightarrow P_5 \rightarrow M \rightarrow O$
modulo iso morphism.
Thue is a bigraded product (Yoneola product) extending
composition $15,9$) $\mapsto 9^{\circ}5$
 $E_{x} + C_1^{A}(M,L) \propto E_{x} + C_2^{A}(L,N) \rightarrow E_{x} + C_1^{A}(M,N)$
For $L = N = F_2$, $M = H^{*}(X)$, got an "action" of$

the Ez for S on the Ez for X
Plop 1. Differentiats dr in the spectral requerce are a derivation
2. Get induced products on all Er
3. The product on Eas is induced by the action

$$\pi_{\pi}(5) \subset \pi_{+}(X)$$

The Xoneda product can be represented by extensions for $s_1, s_2 \ge 1$: $O \rightarrow \Xi^{t_1} \mathbb{F}_2 \rightarrow \mathbb{P}_1 \rightarrow \dots \rightarrow \mathbb{P}_{s_1} \rightarrow \mathbb{M} \rightarrow 0$ $O \rightarrow \Xi^{t_2} \mathbb{F}_2 \rightarrow \mathbb{Q}_1 \rightarrow \dots \rightarrow \mathbb{Q}_{s_2} \rightarrow \mathbb{P}_2 \rightarrow 0$ $-\frac{1}{2} \mathbb{E}_2 \rightarrow \mathbb{Q}_1 \rightarrow \dots \rightarrow \mathbb{Q}_{s_2} \rightarrow \mathbb{P}_2 \rightarrow 0$

$$\circ \rightarrow \Xi'' \stackrel{\text{\tiny (IIII)}}{=} + \Xi' Q_1 + \dots + \Xi' Q_{5_2} \rightarrow P_1 \rightarrow \dots \rightarrow P_5 \rightarrow M \rightarrow 0$$

Example
$$X = 5$$

How to compute $Ext_{CA}(\Pi_{2,3}\Pi_{2})?$
Take a minimal free resolution
 $\Pi_{2} \leftarrow P_{0} \leftarrow P_{1} \leftarrow \dots$
of Z -graded A -modules, then Harch to Π_{2} :
Lemma The differentials one zero
 V_{10} O stude
 $\Gamma_{2} \leftarrow P_{0}$ V_{10} O stude
 $\Gamma_{2} \leftarrow P_{10}$ V_{10} P_{10} Γ_{2} P_{2} P_{10}
 Γ_{2} P_{10} P_{10} P_{2} P_{10} P_{2} P_{10}
 P_{10} P_{10} P_{2} P_{2} P_{10} P_{2} P

 h_i^2 related to Kervaire invariant 4 problem: h_i^2 is a permanent cycle $\implies \exists 2^{i+1} - 2 - dim mEd of Kervaire involuent 4$ Open problem only for h_6^2 (dimension 126)

5 Important Subalgebras of the Steared algebra
Def BEA subalgebras,
$$A/B := A \otimes_B F_Z$$

The (change of ings) IF N is a graded A -module, then
 $Ext_A^{S,t} (A/B, N) = Ext_B^{S,t} (IF_Z, N)$
Def $A(n) := \langle Sn'_1, ..., Sn_Z^{2^n} \rangle \equiv A$
 $E(n) := \langle Q_{0,...}, Q_n \rangle \equiv A(n)$ where
 $Q_0 := Sn^1$
 $Q_1 := Sn^2 Q_{1-1} + Q_{1-1} Sn^2$
Mode $E(n)$ is an exterior algebra on $Q_{0,...,Q_n}$
 $H^*(hn) \cong A//E_1$
 $H^*(hn) \cong A//E_1$
 $H^*(hn) \cong A//A_2$
 $(A(1))$

Douglar- Henriquer-Hill 0810.2131

Appendix. The subalgebra $\mathcal{A}(2)$ of the Steenrod algebra

Here we include a portrait of the subalgebra of the 2-primary Steenrod algebra generated by Sq^1 , Sq^2 , and Sq^4 .

FIGURE 5.8. The $\mathcal{A}(1)$ -resolution of P

FIGURE 5.9. $\operatorname{Ext}_{\mathcal{A}(1)}^{s,t}(P, \mathbf{F}_2)$

$$\frac{6 \text{ (omputing bes Via Adams}}{\text{Foot: For X spectrum, } H^{*}(\text{kon X}) \cong CA \otimes_{d(I)} H^{*}(X)}$$
So $\text{Fxt}_{cd(I)}^{S,t}(H^{*}(X), \mathbb{F}_{2}) \cong \text{Fxt}_{cd}^{S,t}(H^{*}(\text{kon X}), \mathbb{F}_{2})$

$$\int_{Charge oF} \sup S \xrightarrow{V} V$$

$$\text{So } F_{x} t_{cd(I)}^{S,t}(H^{*}(X), \mathbb{F}_{2}) \cong Fxt_{cd}^{S,t}(H^{*}(\text{kon X}), \mathbb{F}_{2})$$

$$\int_{Charge oF} \sup S \xrightarrow{V} V$$

$$\text{So } F_{x} t_{cd(I)}(\mathbb{F}_{2},\mathbb{F}_{2}) \Longrightarrow ho_{1:S}$$

$$\int_{Charge oF} \sup S \xrightarrow{V} S$$

$$\int_{Charge oF} (1 \text{ bold } X)$$

$$\int_{Charge oF} (1 \text{$$

Suppose we want to compute
$$loo_*(IRIP^{\circ\circ})$$
.
We already know $H^*(IRIP^{\circ\circ}) = IF_2[x]$
as an $CA(I)$ -module:
 $Sq^{1}(x^{n}) = nx^{n+1}$ $Sq^{2}(x^{n}) = {n \choose 2}x^{n+2}$ and $degined$

$$\begin{aligned}
 & lo_1(RP^{\circ}) = Z/2 \\
 & lo_2(RP^{\circ}) = Z/2 \\
 & lo_3(RP^{\circ}) = Z/8 \\
 & lo_3(RP^{\circ}) = 0 \\
 & lo_4(RP^{\circ}) = 0 \\
 & lo_5(RP^{\circ}) = 0 \\
 & lo_5(RP^{\circ}) = 0 \\
 & lo_5(RP^{\circ}) = 0 \\
 & lo_7(RP^{\circ}) = 0 \\
 & lo_7(RP^{\circ}) = 0
 \end{aligned}$$

Sidende: using that in low degrees
MSpin agrees with kay,
Can show that these are equal to
$$\Omega_{n-1}^{Pin}$$
 (Freed - Hopkins)

Prop The
$$E_z$$
-term of the homology Adams spectrol sequence is
the cohomology of the cohor complex
 $H_{*}(X) \rightarrow \text{kere } \oplus H_{*}(X) \rightarrow \text{kere} \oplus \text{kere} \oplus H_{*}(X) = \dots$
with differential
 $d(a_1|\dots|a_s||x|) = ||a_1|\dots|a_s||x| + \sum_{i=1}^{s} a_i|\dots|a_i||a_i||a_i||a_{i+1}|\dots|a_s||x|$
 $t = a_1|\dots|a_s||x|||x||$

where $\Delta a_i = a_i^{\dagger} \otimes a_i^{\dagger}$ and $x \mapsto x^{\dagger} \otimes x^{\prime \prime}$ comodule structure