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Exercise sheet 1

Solutions to the following 6 questions are to be handed in September 18 at the beginning of
class. Writing the solutions in LATEX is preferred but not required.

Exercise 1. Let A be a Banach algebra and a → A. Show that left multiplication by a defines a

bounded operator A ↑ A.

Exercise 2. Let A be a C→
-algebra. We abuse notation and denote the scalar multiple of the unit

1 → A by ω → C again by ω → A.

1. Show that ↓1↓ = 1 → C if and only if A ↔= {0}.
1

2. Show that we do always have that ↓ω↓ = |ω| for ω → C if we interpret both sides as being in A.

3. Give an example of a nonzero Banach algebra for which ↓1↓ ↔= 1.

Exercise 3. The purpose of this exercise is to show that for very bad compact spaces X,X ↑
, we can

have C(X) ↗= C(X ↑
) even when X ⊋ X ↑

.

Let S be a set.

1. Define the cofinite topology on S by those open subsets U such that either U = ↘ or S \ U is

finite. Show that this defines a topology on S.

2. Show that S is compact.

3. Suppose that S is finite. Prove that the C→
-algebras C(S) and ε↓(S) are isomorphic.

4. Suppose that S is infinite. Show that the C→
-algebra C(S) is isomorphic to C. (Hint: to show

that every continuous map to C is constant, pick z1, z2 → C distinct and look at the preimage

of nonintersecting open disks around them)

Exercise 4. The purpose of this exercise is to compare the Hilbert direct sum with the algebraic

direct sum of vector spaces. If {Vi}i↔I is a collection of vector spaces, the algebraic direct sum is

defined as
alg⊕

i↔I

Vi = {(vi)i↔I : vi ↔= 0 for only finitely many i}.

Let {Hi}i↔I be a family of Hilbert spaces with Hi ↔= {0} for all i → I.

1Note that the set {0} has a unique C→-algebra structure.
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1. Show that
⊕alg

i↔I Hi is a linear subspace of the Hilbert space direct sum
⊕

i↔I Hi. Explain why

this fact implies
⊕alg

i↔I Hi is an inner product space.

2. Show that
⊕alg

i↔I Hi is a proper subset of
⊕

i↔I Hi if and only if I is an infinite set.

3. Show that
⊕alg

i↔I Hi is a Hilbert space if and only if I is a finite set.

Exercise 5. Let A be a C→
-algebra.

1. Let a, b → A be self adjoint. Show that ab is self-adjoint if and only if a and b commute.

2. Show that if a → A is self-adjoint, then ↓a↓2 = ↓a2↓.

3. Find an example of a C→
-algebra A and an element a → A such that ↓a↓2 ↔= ↓a2↓.

Exercise 6. Let {Ai}i↔I be a family of C→
-algebras. Show that

⊕
i↔I Ai can be realized as the

product of {Ai}i↔I in the category of C→
-algebras. (Hint: you may use the fact we will prove later

in the lectures that every ≃-homomorphism ϑ : A ↑ B into a nonzero C→
-algebra B is bounded of

operator norm 1.)

Bonus exercises

Here are some extra exercises to improve your general understanding of the material in class. These

exercises are not to be included in the hand in assignment. Some exercises have the added purpose

to reply to certain questions by students during and after class.

Exercise 7. Show that a subset U ⇐ X of a topological space is open if and only if every x → U has

an open neighborhood again contained in U .

Exercise 8. Let f, g : A ↑ B be ≃-homomorphisms between C→
-algebras A,B.

1. Show that {a → A : f(a) = g(a)} is a C→
-subalgebra of A.

2. Show that this C→
-subalgebra is the equalizer in the category of C→

-algebras.

Exercise 9. Let A be a C→
-algebra and let a → A. Define the real part of a to be ⇒a :=

a+a→

2 and

the imaginary part of a to be ⇑a =
a↗a→

2i

1. Show that ⇒(a→) = ⇒(a) and ⇑(a→) = ⇓⇑(a).

2. Show that a is self-adjoint if and only if ⇒(a) = a.

3. Find an example of a C→
-algebra A and an element a → A such that ⇒(a) and ⇑(a) don’t

commute.

Exercise 10. We made a big fuss about whether linear maps between Banach spaces are bounded

(continuous) or not. The purpose of this exercise is to show that in finite dimensions, every linear

map is bounded.

1. Show that

↓x↓ =

n∑

i=1

|xi|

defines a norm on Cn
.
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2. Let T : Cn
↑ Cm

be a linear map, where we equip Cn
and Cm

with the norm from part 1.

Show that ↓Tx↓ ⇔ ↓x↓maxi ↓T (ei)↓ where ei is the standard basis.

3. Show that any map T : X ↑ Y between finite-dimensional normed spaces is bounded. You

can use the fact that if ↓.↓ and ↓.↓↑ are two norms on the same finite-dimensional vector space

X, then there exist constants C1, C2 > 0 such that C1↓x↓ ⇔ ↓x↓↑ ⇔ C2↓x↓ for all x → X.

Exercise 11. Let {An}n↔N be a family of nonzero Banach algebras. Then

A =

⊕

n↔N
An := {an → An : sup

n
↓an↓ < ↖}

is a Banach algebra (you don’t have to show this). Let A0 ⇐ A be the subset of those an → A such

that limn↘↓ ↓an↓ = 0.

1. Show that A0 is a closed subspace of A.

2. Why is A0 not a Banach algebra?

3. Show that A0 is an ideal in A.

4. Prove or disprove: A0 is a maximal ideal.

Exercise 12. The goal of this exercise is to show that there is no Hilbert space with a countable

Hamel basis. Let H be a Hilbert space. We say that v, w → H are orthogonal if ↙v, w∝ = 0. A

collection {ei}i↔I is orthonormal if ↓ei↓ = 1 for all i → I and the ei are pairwise orthogonal.

1. Prove that

↓

n∑

i=1

ωiei↓ =

√√√√
n∑

i=1

|ωi|
2

if {e1, . . . , en} is an orthonormal set.

2. Prove that an orthonormal set is linearly independent.

3. Suppose that {en}n↔N is a countably infinite orthonormal set. Show that

(
k∑

n=1

en
2n

)

k

is a Cauchy sequence.

4. Prove that the limit of this sequence can’t be written as a finite linear combination of elements

of {en}n↔N.

Exercise 13. If X is a Banach space, let X→
= B(X,C) be the Banach space of bounded linear

functionals. The purpose of this question is to give an example of a Banach space X such that

X→ ⊋ X.

Recall that the closure A of a subset A ′ X of a topological space is the intersection of all closed

sets in X that contain A. The subset A is called dense if A = X. We say that a topological space

is separable if it admits a countable dense subset.

Let c00 ⇐ ε↓ := ε↓(N) be the subset of sequences xn which are nonzero for finitely many n.
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1. Show that c00 is dense in ε1 := ε1(N). Conclude that ε1 is separable.

2. Let c0 be the subset of ε↓ of sequences xn such that limn xn = 0. Why does it follow from

Exercise 11 that c0 is closed in ε↓? Why does this imply that c00 can’t be dense in ε↓?

3. For each subset I of the positive integers N, define eI → ε↓ by

(eI)i =

{
1, i → I

0, i ↔→ I.

Show that the balls B 1
2
(eI) of radius 1/2 with center eI for I ′ N form an uncountably infinite

collection of disjoint open sets in ε↓. Conclude that ε↓ is not separable.

4. Show that if X and Y are homeomorphic topological spaces and X is separable, then Y is

separable.

5. Define a map ε↓ ↑ (ε1)→ by sending xn → ε↓ to the functional

an ∞↑

∑

n↔N
xnan.

Show that this is a well-defined bounded isomorphism of Banach spaces ε↓ ↗= (ε1)→.

6. Show that (ε1)→ ⊋ ε1.

Exercise 14. The goal of this exercise to give an example of Banach spaces X,Y such that X ↗= Y
as vector spaces but X ⊋ Y as Banach spaces.

1. Using the notation of Exercise 13, define a map ε1 ↑ (c0)→ by sending xn → ε1 to the functional

an ∞↑

∑

n↔N
xnan.

Show that this is a well-defined bounded isomorphism of Banach spaces ε1 ↗= (c0)→.

2. Show that a Hamel basis of a separable infinite-dimensional Banach space has the cardinality

of the continuum. You are allowed to use the continuum hypothesis and the result that there is

no Banach space with countable Hamel basis (i.e. the generalization of Exercise 12 to arbitrary

Banach spaces also holds). Conclude that c0 and ε1 are isomorphic as vector spaces.

3. Show that c0 and ε1 are not isomorphic as Banach spaces. (Hint: if they were, then c→0 ↗= (ε1)→

as Banach spaces. You can use the results of Exercise 13)

Exercise 15. This exercise discusses reflexive Banach spaces. Let ev be the map X ↑ X→→
defined

by x ∞↑ evx where evx(f) = f(x) for f → X→
.

1. Show that ev is a bounded linear map.

2. A Banach space is called reflexive if ev is an isomorphism of Banach spaces. Recall that the

Riesz-Fréchet theorem gives an isomorphism RF : H ↑ H
→
of Banach spaces. Equip H

→
with

the unique Hilbert space structure making RF into a unitary operator. Apply the Riesz-Fréchet

theorem to H
→
to show that every Hilbert space is reflexive.

3. Show that c0 is not reflexive.
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