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Solutions to the following 5 questions are to be handed in September 25 at the beginning of
class.

Exercise 1. Let A be an algebra. Suppose a ∈ A is invertible. Show that Spec(a−1) = (Spec a)−1.
(Hint: a−1 − λ−1 = (λ− a)(λa)−1.)

Exercise 2. Let A be a C∗-algebra. Show without using the spectral radius formula that Spec(a∗) =
Spec(a).

Exercise 3. Let A be a Banach algebra.

(a) Use the spectral radius formula to show that if a is nilpotent, then Spec a = {0}.

(b) Show directly from the definition (without using the spectral radius formula) that if a is nilpotent,
then Spec a = {0}. (Hint: recall the geometric series formula for elements of a Banach algebra.
In the current exercise it need not be the case that ∥a∥ < 1, but maybe something similar
works?)

Exercise 4. Let A be a C∗-algebra and let a ∈ A be self adjoint.

(a) Show that a2 + 1 = (a+ i)(a− i) is invertible.

(b) Show that a2 is positive.

Exercise 5. In this exercise, we study the spectrum of diagonal operators on Hilbert spaces, i.e.
certain elements of the C∗-algebra B(H). Let en be the standard orthonormal basis1 of the Hilbert
space ℓ2(N). More specifically, en is the sequence with all zeroes except 1 at the nth spot. Let
(λn)n∈N be a sequence of complex numbers.

(a) Show that en 7→ λnen uniquely defines a bounded operator S on ℓ2(N) if and only if the sequence
λn is bounded.

(b) Let T : H → H be a bounded linear operator on some Hilbert space H. Show that if λ is an
eigenvalue of T , then λ ∈ SpecT . Conclude that λn ∈ SpecS for all n ∈ N.

(c) Show that SpecS is the closure of the subset {λn} ⊆ C.
1Recall that in a Hilbert space H, when we say orthonormal basis, we mean a collection of mutually orthogonal

vectors ei such that the closure of the span of the ei is all of H. We don’t want to use a Hamel basis, as that concept
that is mostly useful for finite-dimensional vector spaces.
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(d) Show that S is self adjoint if and only if λn ∈ R for all n and unitary if and only if λn ∈ U(1)
where U(1) ⊆ C is the unit circle.

(e) Show that S is positive if and only if λn ≥ 0 for all n.

Bonus exercises

Exercise 6. The purpose of this exercise is to give an example of a subalgebra B ⊆ A of a C∗-algebra
that does not satisfy spectral permanence.

Let {en}n∈Z be the canonical orthonormal basis of ℓ2(Z). Define Uen := en+1.

(a) Show that U extends uniquely to a bounded operator on ℓ2(Z).

(b) Show that U is unitary.

(c) Consider the subalgebra of B(H) generated by the operator U , i.e. the subalgebra consisting
of polynomials in U . Let A ⊆ B(H) be the norm closure of this subalgebra. Show that A is a
Banach algebra.

(d) Let H+ ⊆ H be the closure of the span of all vectors en for n > 0. Show that for all a ∈ A we
have a(H+) ⊆ H+.

(e) Show that 0 /∈ SpecB(H) U but 0 ∈ SpecA U .

Exercise 7. Let X be a compact space and f1, f2 ∈ C(X).

(a) Show that the fi are self adjoint if and only if they take values in the real numbers.

(b) Show that f1 ≤ f2 if and only if f1(x) ≤ f2(x) for all x ∈ X.

Exercise 8. Let a ∈ A and z ∈ C. Show that Spec(a+ z) = Spec(a) + z.

Exercise 9. Let A be the algebra of complex rational polynomials in one variable z. More precisely,
these are expressions of the form p/q with p, q ∈ C[z] polynomials and q ̸= 0. Show that there exists
a ∈ A with Spec a = ∅. Conclude that A does not admit the structure of a C∗-algebra.

Exercise 10. .

(a) Let A be a C∗-algebra and let u ∈ A be unitary. Show that a 7→ uau−1 is a ∗-homomorphism.

(b) Give an example of a C∗-algebra A and an element b ∈ A such that a 7→ bab−1 is not a ∗-
homomorphism.

Exercise 11. Let a be self adjoint and λ ∈ R. Show using the spectral radius formula that Spec a =
{λ} if and only if a = λ.

Exercise 12. Let Ban be the category of Banach spaces and contractions, i.e. objects are Banach
spaces and morphisms X → Y are bounded linear maps T : X → Y such that T ≤ 1.

(a) Show that this is a category.

(b) Show that the product in this category is given by X ⊕ Y with the ℓ∞ norm ∥(x, y)∥ =
max{∥x∥, ∥y∥}.

(c) Show that the coproduct in this category is given byX⊕Y with the ℓ1 norm ∥(x, y)∥ = ∥x∥+∥y∥.
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