
Exercise sheet 3

Solutions to the following 4 questions are to be handed in October 9 at the beginning of class.

Exercise 1. Let n > 0 be an integer and let A ⊆ M2n(C) be the subset of matrices of the form(
λI B
0 λI

)
, (1)

where λ ∈ C, B ∈ Mn(C) and the identity and zero matrices are also n by n. We equip it with the
norm coming from the fact that M2n(C) is a C∗-algebra. Since it is a finite-dimensional subspace,
it is automatically complete and so a Banach space. Hence it is a Banach algebra once we can show
that it is a subalgebra.

(a) Show that A is a subalgebra.

(b) Show that elements of A with λ = 0 are all nilpotent.

(c) Show that the space ΦA only has a single point ϕ.

(d) Show that the Gelfand transform A → C(ΦA) sends a matrix of the form (1) to the function
which sends ϕ to λ.

(e) Explain why A does not admit the structure of a C∗-algebra.

Exercise 2. Let y ∈ [0, 1] and define

I = {f ∈ C([0, 1]) : f(x) = 0 in some neighborhood of y}.

In other words, f ∈ I if and only if there exists a neighborhood U ⊆ [0, 1] of y such that f |U = 0.

(a) Show that I is an ideal of C([0, 1]).

(b) Show that I is not closed. Here we take the topology on C([0, 1]) induced by its C∗-algebra
structure.

Exercise 3. Let R be a commutative ring. Define

V (S) := {m maximal ideal : S ⊆ m} ⊆ ΦR

(a) Show that V (S) = V (I) if I is the ideal generated by S.

So we might as well assume S is an ideal from now on. The Zariski topology on the maximal ideal
spectrum of R is defined by setting the closed subsets of ΦR to be exactly the V (I) as I ⊆ R ranges
over the ideals. A fact that you don’t have to show here is that this defines a topology, i.e. finite
unions of closed sets are closed and arbitrary intersections of closed sets are closed.

Now we consider the case where R = A is a commutative Banach algebra.

(b) Translate V (S) to the algebra homomorphism picture and show it corresponds to

{ϕ ∈ ΦA : â(ϕ) = 0∀a ∈ S}.

(c) Show that every Zariski-closed set is also weak* closed.
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(d) Show that the identity map (ΦA,weak* topology) → (ΦA,Zariski topology) is continuous.

Exercise 4. Let D ⊆ C be the open unit disk of radius 1 and let D be its closure. Let A be the
set of (C-valued) holomorphic functions1 on D with the property that they extend to a continuous
function on D.

The goal of this exercise is to show that ΦA = D. This is interesting because A ̸= C(D) (there
are continuous functions which are not holomorphic), so this is a counterexample to Gelfand duality.

(a) Show that A is an algebra.

(b) Show that there is a well defined injective algebra homomorphism µ : A → C(D).

We will now use the norm on A induced by the C∗-algebra C(D) under µ to make A into a Banach
algebra. For this we need to know that A is closed, which you can show in Exercise 6 in case you
are looking for a distraction from your obligations.

(c) Show that the function ζ : D → ΦA given by sending z ∈ D to f 7→ f(z) makes sense and is
injective (Hint: consider evaluating ϕ ∈ ΦA on the function f(z) = z in A).

(d) Show that ζ is continuous.

We will now apply the result proven in Exercise 6 that polynomials are dense in A.

(e) Use the fact that the subalgebra of A consisting of polynomials in a single variable z are dense
to show that ζ is surjective.

(f) Show that ζ is a homeomorphism (hint: every bijective continuous map between compact
Hausdorff spaces is a homeomorphism).

Bonus exercises

Exercise 5. Let H = ℓ2(N) be the Hilbert space of square summable sequences. Recall that the inner
product is given by

⟨(xn), (yn)⟩ =
∞∑

n=0

xnyn

Define a map T : H → H by (x1, x2, x3, . . . ) 7→ (0, x1/2, x2/4, x3/8, . . . )

(a) Show that T is a well-defined bounded linear operator

(b) Show that ∥T∥ = 1/2

(c) Show by induction that Tn(x1, x2, . . . ) = (0, . . . , 0, x1/2
n(n+1)/2, . . . ) where all entries to the

right of x1 come with strictly smaller coefficients. Conclude that ∥T∥ = 1/2n(n+1)/2.

(d) Use the spectral radius formula to show that Spec(T ) = {0}.

Exercise 6. Recall the notation of Exercise 4.

1For this exercise, you can use the basic properties of holomorphic functions, as for example discussed in the lecture
notes.
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(a) Show that the uniform limit of holomorphic functions on D is again holomorphic and conclude
that A is closed in C(D). (hint: f : U → C is holomorphic if and only if for every curve γ in U
we have ∫

γ

f = 0)

(b) Given f ∈ A and 0 < r < 1, define fr(z) = f(rz). Show that fr ∈ A.

(c) Show that fr → f in A as r → 1.

(d) Let pn ∈ A be the monomial pn(z) = zn and let P ⊆ A be the linear span of pn, i.e. the
subalgebra of polynomials. Show that fr ∈ P . (Hint: fr is holomorphic on a disk of radius > 1.
Therefore it has a power series expansion there which converges uniformly on compact sets)

(e) Show that P is dense in A.

Exercise 7. Let A = Mn(C) for n > 1. Show that there are no algebra homomorphisms ϕ : A → C.
(hint: note that ϕ(a) = 0 if a is nilpotent. Look for nilpotents that multiply to diagonal matrices)

Exercise 8. A linear map T : X → Y between Banach spaces is called contractive if ∥Tx∥ ≤ ∥x∥.

(a) Show that every contractive map is a bounded operator

A Banach ∗-algebra is a Banach algebra A equipped with an involution ∗ : A → A satisfying

(λa+ µb)∗ = λa∗ + µb∗ a∗∗ = a (ab)∗ = b∗a∗ ∥a∗∥ = ∥a∥

for all a, b ∈ A and λ, µ ∈ C

(b) Which axiom is missing in being a Banach ∗-algebra when you compare them to the axioms
for being a C∗-algebra? And which axiom of being a Banach ∗-algebra does not occur in the
definition of C∗-algebra we have seen?

(c) Let A be a C∗-algebra. Use the C∗-identity to show that ∥a∗∥ ≥ ∥a∥. Show that every
C∗-algebra is a Banach ∗-algebra.

Let

Rep(A) = {π : A → B(H) :H is a Hilbert space and

π is a contractive algebra homomorphism preserving ∗}.

Define R(a) = supπ∈Rep(A) ∥π(a)∥, where we used the usual operator norm on B(H).

(d) Show R(λa) = |λ|R(a) and the triangle inequality for the candidate norm R.

(e) Let I = {a ∈ A : π(a) = 0∀π ∈ Rep(A)}. Show that I = {a ∈ A : R(a) = 0}.

(f) Show that I is a closed ideal.

(g) Show that R induces a norm ∥.∥ on A/I which satisfies the C∗-identity

(h) Show that this norm makes the map A → A/I into a contractive algebra homomorphism.

(i) Show that with this norm A/I becomes a C∗-algebra.
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Exercise 9. Let M be a metric space which is compact as a topological space. The goal of this
exercise is to show that C(M) is countably generated as a Banach algebra.

1. Show that M is separable, i.e. that it has a countable dense subset. (Hint: for fixed n ∈ N
consider the collection of balls B(x, 1/n) for x ∈ M)

2. If xn is a countable dense subset of M , show that fn(x) = d(x, xn) is a continuous function on
M

3. Use the Stone-Weierstrass theorem to show that the closure of the algebra generated by the
fn is all of C(M).

References
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