Operator algebra course

Luuk Stehouwer

October 23, 2025

Exercise sheet 4

Solutions to the following 4 questions are to be handed in October 30 at the beginning of class.

Exercise 1. Let A = C(X) be the continuous functions on a compact Hausdorff space X. Recall that in class we have defined a bijection $p \mapsto p^{-1}(\{1\})$ between the collection of projections in A and the collection of clopens in X.

Show that the partial order on clopens given by \subseteq corresponds to the partial order on projections given by restricting the partial order we have studied on self adjoint elements ($a \le b$ iff b - a is positive).

Exercise 2. Show that $T \mapsto T^*$ is a WOT-continuous map $B(\mathcal{H}) \to B(\mathcal{H})$.

Exercise 3. Recall that we have shown in the lecture that the sequence $E_{1,n}$ in $B(\ell^2(\mathbb{N}))$ WOT-converges to 0.

- (a) Show that the sequence $E_{n,1}$ in $B(\ell^2(\mathbb{N}))$ WOT-converges to 0.
- (b) Show that the multiplication map $B(\ell^2(\mathbb{N})) \times B(\ell^2(\mathbb{N})) \to B(\ell^2(\mathbb{N}))$ is not WOT-continuous (Hint: compute $E_{1,n}E_{n,1}$).

Exercise 4. Let X be the Banach space of formal symbols $\sum_{v,w\in\mathcal{H}\setminus\{0\}}\lambda_{v,w}e_{v,w}$ with

$$\sum_{v,w\in\mathcal{H}\setminus\{0\}} |\lambda_{v,w}| ||v|| ||w|| < \infty$$

and norm

$$\left\| \sum_{v,w \in \mathcal{H} \setminus \{0\}} \lambda_{v,w} e_{v,w} \right\| = \sum_{v,w \in \mathcal{H} \setminus \{0\}} |\lambda_{v,w}| \|v\| \|w\|$$

as defined in class. Show that these formal sums are always countable in the sense that $\lambda_{v,w} = 0$ for all but countably many v, w.

Bonus exercises

Exercise 5. Let $\mathcal{H} = \ell^2(\mathbb{Z})$. Define the operator $(Ux)_n = x_{n+1}$.

- (a) Show that U is a bounded linear operator.
- (b) Show that U is unitary.

- (c) Show that the sequence U^n converges to 0 in the weak operator topology.
- (d) Show that U^n does not converge in the norm topology to 0.
- (e) Conclude that U^n does not converge at all in the norm topology.

Exercise 6. Show that for a fixed $T' \in B(\mathcal{H})$, the multiplication map $T \mapsto T'T$ is WOT continuous. Exercise 7. Given $v, w \in \mathcal{H}$ define $E_{v,w}(u) = \langle w, u \rangle v$. An operator is *finite rank* if it is in the subalgebra generated by the $E_{v,w}$ (we don't take any closure).

- (a) Show that T commutes with $E_{v,w}$ if and only if there exists $\lambda \in \mathbb{C}$ such that v is an eigenvector of T with eigenvalue λ and w is an eigenvector of T^* with eigenvalue $\overline{\lambda}$. (Hint: $\lambda = \frac{\langle w, Tw \rangle}{w, w}$)
- (b) Let $A \subseteq B(\mathcal{H})$ be the subalgebra of finite rank operators. Show that $A' = \mathbb{C} \subseteq B(\mathcal{H})$.
- (c) Conclude that $B(\mathcal{H})' = \mathbb{C}$.