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1 Introduction Lecture (September 2)

Ezample 1.1. Let n > 0 be an integer. M, (C) is the collection of n by n matrices with entries in
C. From linear algebra we know matrices can be added, multiplied by scalars and we have matrix
multiplication with the identity matrix as the unit. There are several matrix norms but one standard
one is

Av Cn
jA = sup [1Avller
W30 Tollen

where ||v]|c» is the standard Euclidean norm |vq|? + - -+ + |v,|2. There is a notion A* = (aj;);,; of a
conjugate transpose of a matrix A = (a;;); ;.

Ezample 1.2. Let £>°(N) be the space of bounded sequences (zp)neny with z, € C. These can be
entrywise added and multiplied and the constant sequence 1 is a unit. They also have a norm

[(zn) || = sup [n|.
n

Moreover, this makes £°°(N) into a Banach space, i.e. a complete normed vector space. Sequences
also have a conjugate operation (z,)% = (Tn)n.

Ezample 1.3. Let C(]0,1]) be the space of continuous complex valued functions on a closed interval.
These can be added, multiplied and complex conjugated. Since continuous functions on [0, 1] are
bounded, the norm

£l = Sup]lf(fc)l

z€[0,1

is finite.

Definition 1.4. An algebra is a complex vector space A equipped with a bilinear multiplication
map -: A X A — A which is associative and has a unit 1 € A.

Ezample 1.5. The set C[z] of polynomials in a since variable x is an algebra. Even though polynomial
algebras have a rich geometric theory (algebraic geometry), this is not the type of algebras we consider
in this course. Instead we will consider algebras which are more analytic in nature. They will be
‘larger’; they are complete normed spaces.

Definition 1.6. A normed vector space is a complex vector space X equipped with a norm ||.||: X —
R>q satisfying
lz+yll <llzll + Iyl Azl = [Alll]]

and ||z|| = 0 if and only if = 0.
Every normed vector space X defines a metric space with d(z,y) = ||z — y||.

Definition 1.7. Recall that a topology on a set X is a collection T of subsets of X called open sets
which are closed under finite intersections and arbitrary unions such that § € 7. A closed set is the
complement of an open set. A set with a topology on it is called a (topological) space. We say that
the topology 7" is stronger than T if T C T".

Ezample 1.8. If (M, d) is a metric space, then 7 given by unions of open balls defines a topology on
M. In other words, open balls form a basis for the topology on M.

Definition 1.9. A(n open) neighborhood of x € X is an open set containing x.



Exercise 1. A subset U C X is open if and only if every € U has an open neighborhood contained
inU.

Definition 1.10. A sequence x,, in a topological space converges to x if for every open neighbourhood
U of x there exists an N such that x,, € U for all n > N.

Ezercise 2. A sequence x,, in a metric space converges to x if and only if for all € > 0 there exists
an N such that Vn > N we have d(z,z,) < €.

Definition 1.11. A sequence in a metric space is Cauchy if for all € > 0 there exists an N such
that d(z,, zm) < € if n,m > N. A metric space is complete when every Cauchy sequence converges
to some element.

Many topologies in analysis can be studied very well using sequences because they are first
countable.

Definition 1.12. We say that X is first countable if every point € X has a countable neighbour-
hood basis, i.e. there exists a countable collection U,, of neighborhoods of = such that every open
neighborhood of x contains U, for some n.

Ezample 1.13. Any metric space is first countable with U,, the balls of radius 1/n.

Lemma 1.14. A subset A of a first countable space X is closed if and only if every sequence a, in
A which converges in X also converges in A.

Proof. ¢ =’ This direction holds in general. Suppose A is closed and a,, converges to z € X. Let
us assume = € X \ A and work towards a contradiction. Because X \ A is open, there exists an open
neighborhood U of z disjoint from A. But by convergence we have that a,, € U for sufficiently large
n, a contradiction.

“ <=’ We prove the contrapositive and so assume X \ A is not open. Then there is some
x € X \ A such that every open neighbourhood U of z intersects nontrivially with A. Pick a
countable neighborhood basis U,, of x. Pick an arbitrary a,, € U, N A for every n. Because U, is a
neighborhood basis, a,, is a sequence of elements of A converging to z € X \ A. O

Definition 1.15. A Banach space is a normed vector space which is complete.

Example 1.16. A closed subspace Y of a Banach space X is a Banach space. Indeed, a Cauchy
sequence in Y converges in X and its limit is in Y by Lemma|1.14

Example 1.17. Let p > 1. Let % be the collection of sequences z,, such that > |z,[? < oco. It can
be shown to be a Banach space with norm

[znll = (Z Ixnl”> 1/1’.

n

Definition 1.18. A Banach algebra is an algebra that is also a Banach space such that ||ab|| <
llal|||b]l. A C*-algebra is a Banach algebra equipped with a ‘star’ operation x: A — A such that

a**:a (ab)*:b*a* (a+b)*:a*+b* ()\a)*:Xa*

as well as the C*-identity
la*all = [lal|.



Remark 1.19.

1. The C*-identity is somewhat mysterious. We will prove all sorts of nice consequences of it next
week. For example, the norm is completely determined by the algebraic structure. You will
also see how some Banach algebras are ‘less nice’ in the exercises.

2. There are obvious notions of algebra over R, Banach space over R and Banach algebra over R.
However, the correct definition of C*-algebra over R is rather subtle and will not be considered
in this course.

3. The definition of Banach algebra and C*-algebra also make sense without a unit. In fact,
most references don’t assume unitality because there are many examples that don’t satisfy it.
However, we will not study non-unital algebras because they will give you a headache.

Ezample 1.20. The algebra C with ||z|| := |z| and complex conjugation is a C*-algebra.
Ezample 1.21. Let {A;};er be a family of C*-algebras. Define

P Ai = {(ai)ier : Sup [Ja;l| < oo}

This is an algebra with pointwise sum, product and scalar multiplication. It has a pointwise * and
obvious norm which makes it into a C*-algebra. In particular, £>°(S) := @, .5 C is a C*-algebra for
a set S.

Egercise 3. Show that A = M>(C) with [|a;;|| := >, ; [a;;| is a Banach algebra .

ses

Definition 1.22. A map f: X — Y between topological spaces is continuous if for all U C Y open,
f~1(U) is open.

Ezercise 4. A map between metric spaces is continuous if and only if it satisfies the usual epsilon
delta definition.

Definition 1.23. A space X is compact if for all open covers of X — i.e. a family of opens U; for
i € I such that U;e;U; = X — there exists a finite subcover {U;,,...,U;, }.

Lemma 1.24. Let X be a compact topological space. Then every continuous function f: X — C is
bounded.

Proof. Let f: X — C be continuous. For every r € R, define the open sets U, = {z € X : |f(z)| <
r} = f~Y(B,). Here B, is the open disk of radius r in the complex plane. Note that J, U, = X is
an open cover of X. Because X is compact, there is a finite subcover {U,,,...,U,, }. We see that
|f(z)] <max{ry,...,r,} forall z € X. O

Definition 1.25. If A is a C*-algebra, we say that a subspace B C A is a C*-subalgebra if it is
closed in the norm topology, as well as closed under multiplication, the % operation and 1 € B.

Since a closed subspace of a Banach space is a Banach space, a C*-subalgebra is again a C*-
algebra.

Proposition 1.26. Let X be a compact topological space. Then C(X) is a C*-algebra.



Proof. We have seen that ¢£>°(X) is a C*-algebra. In Lemma we have seen C(X) is a subset of
£>°(X). It therefore suffices to show that it is a closed unital x-subalgebra. Since complex conjugation,
addition and multiplication preserves continuity, and the constant function 1 is continuous, this is a
x-subalgebra.

It remains to show that C(X) C ¢*°(X) is closed. Because norm spaces are first countable, it
suffices to show that for every sequence (f,)nen of continuous functions with limit f € £°°(X), the
limit is also continuous. This follows by the uniform limit theorem. The short proof on wikipedia
is copied here: we have to show that for every e > 0, there exists a neighborhood U of any point
x € X such that:

If(z) = fly) <e,  VyeU

Consider an arbitrary € > 0. Since the sequence of functions f, converges uniformly to f by
hypothesis, there exists a natural number N such that:

€
vt - fWI<S,  veex
Moreover, since fy is continuous, for every x there exists a neighborhood U such that:

() — fn ()] < =

, Yy e U
3 Y

In the final step, we apply the triangle inequality in the following way:

[f (@) = fW)l < [f(2) = fn (@) + [fn (@) = In )] + v (y) = F(y)l (1)
<§+§+§:e Yy eU. (2)
O

Next lecture, we will show continuous operators on a Hilbert space form a C*-algebra. After that
we will need to develop some general theory with the goal of proving an equivalence of categories
between compact Hausdorff spaces and commutative C*-algebras in a few weeks. After that we will
move on to von Neumann algebras.



2 Operators on Hilbert space (September 4)

Today we will discuss the main example of a C*-algebra: continuous operators on a Hilbert space.

We start defining operators on Banach spaces, which already form a Banach algebra. A linear
map between infinite-dimensional Banach spaces is not always continuous, but it turns out to be
continuous exactly when the following straightforward condition holds.

Definition 2.1. A linear map between Banach spaces T: X — Y (also called an operator) is bounded
if there exists a C' > 0 such that ||Tx| < C||z| for all z € X.

Clearly only the zero map is bounded in the literal sense, so the terminology should not be too
confusing.

Definition 2.2. Let B(X,Y") denote the bounded operators X — Y and B(X) := B(X,X). The
operator norm on B(X,Y) is defined by

7 — IT@)]

sup
zeXx\{0} [l

The quotient is defined because ||| # 0 if # # 0. The norm is finite as || T|| < C, where C is the
bound in the definition of a bounded linear map. Moreover, if z # 0, then

Tl o, 17wl
Izl yexyioy Nyl

=Tl = Tzl < [Tl]l=|

and the equation also clearly holds when x = 0.
If T,S € B(X) and A € C, then ||AT'|| = |A|||T]| and by the triangle equality in X

Tz + Szl -, 172l + 0152l [T| Ty

IT+5| = = [T [1S1]-

zex\{0} [Eal zex\{0} |zl zeX\{0} |zl yex\{0} Iyl

We see that B(X) is a normed space.
Note that ||idx || = 1 is bounded. Also note that

175 = sup [ TSz|| < sup (|T[[Sz]) =TS

lzl=1 ll=l=1
We conclude that B(X) is a Banach algebra as long as we can prove:
Lemma 2.3. B(X,Y) is complete.

Proof. Let T,, be a Cauchy sequence. The first claim is that for all x € X, the sequence T,z
converges. Indeed, let x € X and note that the result is trivial unless = # 0. Now take N so that
T — Th)l < €/||z]|. Then

[Tz — Tpzll < ([T — Tullllz] <€

and so T,z is Cauchy. By completeness of Y, T,,x converges to some element of X we will call Tx.
To finish, we need to show that T is a bounded linear operator and 7,, converges to T. If
x1,z2 € X, then
T(x1) + T'(x2) = im(T,(x1) + Tn(xz)) = T(x1 + 22)



by linearity of all T, and the fact that sums of convergent sequences converge to the sum of the limit
(continuity of addition). This holds similarly for scalar multiplication, and so T is linear.

Let € > 0. It suffices to show that |T — T,|| < € for n sufficiently large. Indeed, then T is
automatically bounded since T'— T, is bounded. Pick N so that |1, — T),|| < ¢/2 for all n,m > N.
We claim that ||T — T,|| < e if n > N. Let z € X. By definition of Tz, we can pick M so that
IT(x) — Tn(x)|| < €||lz||/2 for all n > M. Then if m > max{N, M}, we have that

(T = Tn) (@)l < [Tz — Tzl + || Tnz — Tozl| < [Tz — Tzl + [T — Tullllz] < €|zl
We see that ||T'— T,,|| < € for all n > M. O
Sometimes the formula

1Tl = sup [T ()]

llzll=1

is convenient, which we prove as follows. By restricting the supremum to a subset, we have

Tx Tx
172l o oo 1230 _ o il
zeX\{0} [|z]] lz]|=1 [|]] lz||=1

Conversely note that when = # 0

X
MM=MMTQﬂM=hMNWMM
Since ||z/||z|||| = 1, we thus get
7] i)l
— T/l < sup ,
(B lvi=1 Nyl

finishing the argument.

Definition 2.4. An inner product space is a vector space H equipped with an inner product. Here
an inner product is a sequilinear map

(= —):HxH—=C
such that
1. (v,w) = (w,) for all v,w € H (hence (v,v) € R)
2. (v,v) >0 forallveH
3. (v,v) =0 if and only if v = 0.
By sesquilinear, we mean that
(Av1 + Agvz, w) = Ay (1, w) + Ao v, w) (v, prwy + pows) = py (v, wy) + pa v, ws).

Warning 2.5. Many authors assume instead that inner products are complex linear in the first
argument and complex anti-linear in the second, instead of the other way around.



We want to be able to talk about complete inner product spaces. By complete, we will mean
that the induced normed space ||v| := /{(v,v) is a Banach space. Most of the axioms of a normed
space are easy to check, but the triangle equality is not immediately clear. It can be shown as a
consequence of the following important lemma (exercise).

Lemma 2.6 (Cauchy—Schwarz). For all x,y € H we have that

(@, )] < [lz[l]ly]l.
Proof. You can find one on Wikipedia. O
Definition 2.7. A Hilbert space is a (complex) vector space H with a complete inner product.
Ezample 2.8. C is a Hilbert space with (21, z2) = Z725.

Definition 2.9. A (bounded) (linear) functional on a Banach space X is a bounded linear map
X — C. Given a Banach space X, let X* := B(X,C) be the Banach space of bounded linear
functionals.

Ezample 2.10. Let H be a Hilbert space and x € H. The functional (x,—): H — C is bounded of
operator norm ||z||. In other words

] = sup -0
A P

Since this is obvious for z = 0, we assume = # 0. Indeed, by Cauchy-Schwarz we have that

for all nonzero y € ‘H. Moreover, the supremum is attained by y = x as

(z, )
-

]l =

The following lemma requires some work to prove.

Lemma 2.11. Let Hy,Ho be Hilbert spaces If T: H1 — Ho is a bounded operator, there exists a
unique operator T*: Ho — Hq such that

(Tv,w) = (v, T*w)
for allv e Hi and w € Hs.
Assuming the lemma, however, it is not that difficult to show:
Theorem 2.12. Let H be a Hilbert space. Then B(H) is a C*-algebra.

Proof. We have already shown B(H) is a Banach algebra. By using the uniqueness property of the
adjoint, we see that (T'+ S)* = T* + 5* and (AT)* = AT* by sesquilinearity of the inner product.
Also note that T** =T since

(T*v,w) = (w, T*v) = (Tw,v) = (v, Tw).



Finally (ST)* = T*S* is also clear.
So it remains to show the C*-identity. For this, first note that by Example we have for any
operator T' that
||| = sup [Tzl = sup [T,y
llzll=1 llzll=1,]lyll=1

Applying this to T*T', we see that

IT°T| = sup  [(T"Ta,y)[= sup (T, Ty)|.
lell=1,llyll=1 lell=1,llyll=1

Now we have on the one hand that

2
sup [(Tz,Ty)| > sup |(Tz,Tz)| = sup ||Tx|\2: sup ||[Tz|| ] = ||T||2
llzl|=1,|yll=1 llzll=1 llz|l=1 llzll=1

while on the other hand

sup  [(Tz,Ty)| < sup || Tall|Ty] = ||IT*.
lell=1,llyll=1 lell=1,llyll=1

O
For the proof of the existence of adjoints, we need a classical theorem of Hilbert space theory.

Theorem 2.13 (Riesz-Fréchet). The map RF: H — H* defined by sending x to (x,—) is a complex
antilinear isomorphism of Banach spaces.

Here a map T: X — Y is called complex antilinear if T(x1 + x2) = Ty + Txy and T(A\x) = AT
It still makes sense to talk about boundedness for such maps.

The fact that RF is complex antilinear follows from sesquilinearity of the inner product. It
follows from Exercise that the RF is an isometry, i.e. | Tx| = ||z||. An isometry is in particular
bounded. Injectivity then follows because every isometry is injective. So the surjectivity, i.e. the
fact that every bounded functional f: H — C is of the form (z, —) for some x € H is the nontrivial
part. This fact is proven irﬂ [1, Number 5] using the theory of projections.

Now, given the Riesz-Fréchet theorem, we can define T*x as the inverse of the functional

y — (z,Ty),

under the Riesz-Fréchet isomorphism. In other words, uniqueness follows by injectivity of RF' and
existence by surjectivity. We can conclude that B(#) is a C*-algebra.

If T is a (potentially uncountable) set and (x;);er a collection of elements in a Banach space X,
we say that ), ; x; converges to the value v € X if for every e > 0 there exists a finite set Fy C I
such that || . p#; — z|| < € whenever F' contains Fp.

Ezample 2.14. Let H,; for ¢ € I be a family of Hilbert spaces. Then the direct sum Hilbert space is

@Hi:{vi E?—li:Z|vi|2 < oo}

el i€l

IThe section numbering in Bram’s PhD thesis is potentially confusing. There are sections, subsections and subsub-
sections as usual. But deeper than that there are also ‘numbers’ which are then divided into roman numerals which T
will refer to as ‘paragraphs’. So Number 3 Paragraph V refers to the definition of direct sum of C*-algebras.



with inner product

((vi)ier, (wi)ier) = Z(vi,wi}

iel
This is shown in [I, Number 6 Paragraph II]. As a subexample, we can take all H; to be C. We
obtain that the Banach space £2(S) is a Hilbert space with inner product

10



3 The category of C*-algebras (September 9)

Definition 3.1. Let A be a C*-algebra. An element a € A is called

1. invertible if there exists a (necessarily unique) a=! € A such that a=la =1 =aa™1.

2. self-adjoint if a* = a
3. unitary if a* is the inverse of a

Ezample 3.2. For A = M, (C), this reproduces the notions of self adjoint and unitary matrix you
already know.

Ezample 3.3. In C(X), we have that f € C(X) is self adjoint if and only if it is real valued. A
function is unitary if and only if it is valued in the unit circle.

Definition 3.4. Let A, B be C*-algebras. A x-homomorphism ¢: A — B is a (unital) algebra
homomorphism such that ¢(a*) = ¢(a)*.

Remark 3.5. It might be surprising that we didn’t require ¢ to be bounded. The reason is that this
will be automatic, but we don’t have the machinery to prove this yet.

We do a small detour reviewing the basics of category theory. This will be useful later to express
Gelfand duality. Indeed, Gelfand duality will say how commutative C*-algebras are ‘the same’ as
compact Hausdorﬂﬂ topological spaces, but how to we express this?

Definition 3.6. A category C consists of a class ob C called objects, for all x,y € obC a set Home (z, y)
of morphisms and for all x,y, z € obC a composition operation

Homc(y,Z) XHomc(x,y)%Homc(x,z) (gaf)’_)gof

which is associative and has units id, € Home(z, x).

When we will write x € C, we actually mean = € ob(C. Sometimes we will write f: z — y for
f € Home(z,y). We will also often omit the subscript C from the notation if it’s clear what category
we are talking about.

In a category, we often want to identify two objects not only when they are equal, but also when
they are isomorphic:

Definition 3.7. We say that a morphism f € Home(x,y) is an isomorphism if it has a both-sided
inverse f~!' € Home(y, ) under composition. Two objects are called isomorphic if there exists an
isomorphism between them.

Ezxample 3.8. The category of groups and group homomorphisms. Isomorphisms are group isomor-
phisms.

Ezxample 3.9. The category pt is defined to have a single object and a single morphism.

Ezample 3.10. The category of Banach spaces and bounded operators. Isomorphisms are operators
with a bounded inverse.

Another option would be to take morphisms to be norm-preserving. Then isomorphisms would
be isometric isomorphisms. We will focus on the category of bounded operators in this document.

2We will see what Hausdorff spaces are later.

11



Example 3.11. The category of C*-algebras and *-homomorphisms.

Ezxample 3.12. The category of topological spaces and continuous maps. Isomorphisms are called
homeomorphisms.

Ezample 3.13. If C is a category, the opposite category C°P has the same objects, but the composition
is reversed. In other words, Homeop (2, y) = Home (y, ) with composition in the reversed order.

So how do we express the relationship between the category of topological spaces and the category
of C*-algebras? First we need to know what is a ‘morphism between categories’.

Definition 3.14. If C, D are categories, a functor C — D consists of an assignment F': obC — obD
on objects, and a family of maps F, ,: Hom(z,y) — Hom(Fz, Fy) for all objects z,y € obC such
that I, .(go f) = Fy .(g9) o Fpy(f) and Fy ,(id,) = idpy.

We usually abuse notation and write F' for F}, .

Ezample 3.15. The assignment X +— C(X) defines a functor from the category of compact topological
spaces to the opposite of the category of C*-algebras. Indeed, you can verify that if g: X — Y is a
continuous map, then f +— f o g defines a *-homomorphism C(Y) — C(X). Moreover, this respects
identities and composition.

Ezample 3.16. If C is a category and x € C is an object, there is a functor pt — C sending the unique
object to x.

How do we say that a functor F': C — D expresses that C are ‘the same’? We could say that
F has an inverse functor G: D — C such that F o G = idp and G o F' = id¢. This notion is called
isomorphism of categories, but we usually want something slightly weaker. For this, we will see that
functors C; — Cy are themselves objects of a category. In that case, it might be better to talk about
isomorphisms of functors as opposed to equality. Morphisms in the category of functors are called
natural transformations.

Definition 3.17. If ', F5: C; — Cs are functors, a natural transformation F; = F5 is an assignment
of ¢ Fi(x) = Fa(x) to x € obCy such that the diagram

commutes for all f € Homg, (z,y). Here a diagram commutes if it doesn’t matter in which direction
one traverses it. So the above diagram means F5(f) o ¢, = ¢, o F1(f).

One can show that natural transformations assemble into a category with composition (¢ 0 ¢), =
Yz 0 ¢,. Now we can say that F; and F, are naturally isomorphic if they are isomorphic in this
category. This is the same as saying that there exist a natural transformation F; = F5 of which the
components ¢, : Fy(z) — F»(x) are isomorphisms for all z € C;.

Definition 3.18. A functor F': C — D is an equivalence if there exists a functor G: D — C such
that G o F' is naturally isomorphic to id¢ and F o G is naturally isomorphic to idp.

A functor is an equivalence of categories if and only if it is ‘fully faithful’ and ‘essentially surjec-
tive’. These conditions are good to know about as they are generally easier to check than to directly
verify the existence of the inverse GG, but we probably won’t need them in this course.

12



Definition 3.19. Let D: Z — C be a functor. An object z € obC equipped with a collection of
morphisms f;: x — D(4) for all ¢ € obZ is called a limit of D if it has universal property of being a
cone: for all morphisms ¢: i; — i3 in Z, we have that

X

LN
_—

) D
D(ir) (#)

D(i2)

commuteﬂ and for any other object y € obC equipped with a collection of morphisms g;: y — D(7)
for all i € obZ such that the analogous diagram commutes, there exists a unique morphism g: * — y
such that f; o g = g; for all i € obZ.

There is a completely analogous notion of colimit in which all the arrows are reversed.

Let I be a set and let Z = L;c pt be the category with object set I, with only identity morphisms.
Let C be a category. Then a functor F': Z — C exactly picks out an I-family of objects x; € obC for
i € I. A product of the x;, denoted [],c; @i, is a limit of F.

For example, if |I| = 2, a product of z and y is an object x X y together with morphisms
m:x Xy —xand my: x X y — y such that for every pair of morphisms ¢1: z — = and ¢3: 2 — v,
there exists a unique morphism ¢: z — x X y such that m1¢ = ¢ and me¢ = ¢o. This information
is usually summarized by the commutative diagram:

Ezample 3.20. A product in the category of sets is given by the usual Cartesian product. A product
in the category of groups is the usual product of groups.

Ezxample 3.21. A product of topological spaces X; in the category of topological spaces and continu-
ous maps, is the product topology on [],.; X;. This topology is generated by sets the form [],.; Ui,
where U; C X are open and U; = X for all but finitely many ¢ € I.

Let Z be the category consisting of two objects a and b and two morphisms a — b next to the
two identity morphisms @ — a and b — b. Then a functor F': Z — C is the same data as two objects
x,y € C and two morphisms f,g: x — y. An equalizer of f and g is the limit of F.

Exzample 3.22. A equalizer of f,g: G — H in the category of groups is given by the kernel of fg=!.

3Look at the diagram, it’s a cone!
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4 Series in Banach spaces and holomorphic functions (Septem-
ber 11)

In this lecture we will develop some analytic tools. This might be somewhat dry if you don’t like
analysis as much (like me), but it will be useful for understanding the spectrum of an element a € A,
and then the spectrum of a C*-algebra A.

4.1 Convergent series

. . k
Let (2n)nen be a sequence of elements in a Banach space X. We denote > @y, = limp_00 o ZTn
if the series converges.

Definition 4.1. We say that the series > 2, converges absolutely if

neN
Z |zn |l < oo
n

Lemma 4.2. If a series converges absolutely, then it converges.

Proof. If x,, converges absolutely, then (Zg:o Zn)nN is a Cauchy sequence because for N; < Ny we

have
Nz N1 N2 N2
D wn= D || = | 3 @) < D ol
n=0 n=0 n=N; n=N1

and (Zﬁ;o lzn ) v is a Cauchy sequence since it converges. By completeness (Zf:]:o Zp)N COnVErges.
O

Let A be a Banach algebra. The fact that elements have a geometric series will be used often.
Lemma 4.3. Let a € A satisfy ||a|| < 1. Then
1. ZZO:O a™ converges absolutely
2. 307 pa™ is the inverse of 1 — a.
Proof. By geometric series, we get
o0 o]
Dol <> flal™ =1~ fal)" < oo
n=0 n=0

Since (ZZO:O a™)n converges absolutely it converges to some element by Lemma To verify it
converges to (1 —a)~!, we take the limit of the equation

I-a)l+a+a®+---+a¥)=1—aV*!,

as N — oo, which by continuity of left multiplication by 1 — a gives us

(1—a) (Z a”) =1,
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since [|a™| < ||a||N — 0 as N — co. We can derive

<§n:a"> (1—a)=1

in a similar manner.

O

Remark 4.4. For people who haven’t seen geometric series: let 0 < r < 1 be a real number. Note

that
(1—T)(1+r+r2+~~+rN):1—7”N+1,
and so N
Zr”zil_TNH
1—r
n=0

N converges to 0 (because 7 < 1), we see that

= 1
nz::or": s

for every N. Thus, since r

We need more generalities about convergence of series in Banach spaces. The following definitions

and results are probably familiar in the special case that the Banach space is C. For the next few

lemmas, let x, be a sequence in a Banach space, thought of as a series.
Definition 4.5. The radius of convergence of (x,,) is R(x,) := (limsup,, ||z,[|*/™)~" € [0, oc].

Lemma 4.6. Suppose that ZZOZO T, converges. Then limx,, = 0.

Proof. By convergence (Zﬁ:o :zn)k is a Cauchy sequence. Let € > 0 and pick IV large enough so

that

<e€

k l
DT
n=0 n=0

if k,l > N. Now take [ = k + 1 to see that ||z,| <eif n > N.

Proposition 4.7 ([I 13II]). Let z € C.
1. If |2] < R(xy), then Y, xp2™ converges absolutely.
2. If >, xn2™ converges, then z < R(xy,).

Proof. Suppose that |z| < R(x,). We must show that

D laal 2™ < oo
m

If z = 0, this is obvious, so assume that |z| > 0. Then since R(z,,) > 0, we have that R(x,)~!|z| < 1.
We can therefore pick & > 0 small enough so that (R(z,) *+¢) |2| < 1. Now since limsup,,, ||@m || 7 <
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R(z,)"! + ¢, we can take N so large that [|2,,||= < R(z,)"! +¢ for all m > N. Then ||z,,|| |2| <
(R(z,) ' +¢€)|z] < 1forall m > N, and so

. N—-1 . 0o N m
Slemll 1™ = 3 lzmll A7 + > (laml12)
m=0 m=N

N-1 00
<Y el 2™+ D (Rlan) ™ +2)[2))™ < o0
m=0 m=N

by convergence of the geometric series.

Suppose now instead that ) x,2" converges. Then ||z, |||2|" converges to 0 by Lemma In
particular, there is N with ||z, |2|™ < 1 for all m > N. Then ||z,,||7 < |z|~" for all m > N, so
that R(z,)"" = limsup,, [|am||# < |2|7", giving |2| < R(z,). O

4.2 Integration

We will define integrals in Banach spaces. There will be no surprises, but it is also somewhat tedious.
For this we need a lemma which is also useful in many other contexts. To define the terms in the
lemma, we make a brief topological detour:

Definition 4.8. A subset Y of a topological space X is called dense if Y = X. Here we used the
notation A for the closure of a subset A C X of a topological space X; the intersection of all closed
sets in X which contain A.

Ezercise 5. Show that an arbitrary intersection of closed sets in a topological space X is closed.
Conclude that the closure of a subset A C X is closed.

Lemma 4.9. Let D C X be a dense subspace of a normed space X and let Y be a Banach space.
If T: D —Y is a bounded linear map, then T extends uniquely to an operator T': X — Y with the
same operator norm.

Proof. Let x € X and let (z,,)nen be a sequence in D converging to . If T’ exists, we must have

Tz = lim Tzx,.
Typ—T
Since z,, converges in X, x,, is a Cauchy sequence in D. Because T is bounded, it follows that Tz,
is a Cauchy sequence and so this limit exists.
Note first that 7" is well-defined. Indeed, if z, is another sequence converging to x, then z,, — z/,
converges to 0, so that | Tz, — Tz},|| converges to 0. From this it follows that
lim Tz, = lim Tz,
Ty —T x), =T
as desired.
We show that 77 is bounded with the same norm ad¥ as follows

Tl = | lim T@,)] = lim [T(@)] < lim 7]z = IT]la]
O
41f x,, converges to x, then ||z|| = limn— oo [|Zn|| by the reverse triangle inequality. In other words, ||.||: X — R is

a continuous map.
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Let X be a Banach space and take a half openﬂ interval (s,t] in R. Define a step function
f: (s,t] = X to be a linear combination of indicator functions of subintervals. Here a subinterval is
a subset (s1,t1] C (s,t] for some s < 57 < ¢1 <t and the indicator function on a set S C (s,t] with

value z € X is tl;e function
) = x ift'es,
S lo it ¢S

If f is a step function, it is possible to pick s = sg < s51 < -++ < S < sp+1 = t for some k > 0 so that
f(t') takes a fixed value x; € X whenever s; < t' < s;41 for all i € {0,...,k}. Moreover, given f
there is a unique minimal choice of s; (in the sense that k is smallest) where we have that x; # ;41
for all 7. The integral of this step function is then defined as

t k
/ f:in(si—&-l*si)eX-
s i=0

Every step function has a canonical extension to [s,t] and from now on we will consider them as
functions on [s,]. Step functions form a linear subspace S|s,t] C ¢>°(]s, t]; X ), where £°°([s,t]; X) is
the Banach space of bounded maps [s,t] — X with the supremum norm supy ¢, . | f(#')]]-

The integral defines a linear map fst S(s,t] — X which is bounded because

‘vamﬂ

It therefore extends to a bounded linear map f;: S[s,t] = X by Lemma E Let C([s,t]; X) C
£°([s,t]; X) the subspace of continuous functions [s, ] — X. Step functions are rarely continuous,
but it turns out that we do have C([s,t]; X) C S:

Ezercise 6. Show that every continuous function [s,t] — X is a uniform limit of step functions.
(Hint: by the Heine-Cantor theorem, such a function is uniformly continuous)

Let I' C C be a contour, i.e. a subset that can be parametrized by a C! path v: [s,t] — C. The
contour integral of a continuous map f: C' — X is defined by

/Ff = / ) (¢

One can check that this is independent of the choice of parametrization using the chain rule and the
fact that any reparameterization corresponds to a C! map 7: [s1,t1] — [s2,t2].

< (=9I

4.3 Holomorphic functions

Functions which are complex differentiable are usually called holomorphic functions. Holomorphic
functions from the complex numbers into a Banach space make sense. Even more, we will see later
that all cool complex analysis theorems such as Cauchy’s integral theorem still hold.

Definition 4.10. Let X be a Banach space. If U C C is an open set, a function f: U — X is
holomorphic if for all z € U

exists.

5We do this for technical reasons. It is also possible to allow intervals of all four types.
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FEzercise 7.

1. Given x € X, show that the map C — X given by z + zx is holomorphic with derivative the
constant function at x.

2. Show that if U,V C C are open, f: V — X is holomorphic and g: U — V is holomorphic in
the usual complex analysis sense, then f o g is holomorphic.

3. Show that if A is a Banach algebra and f: U — A and ¢g: U — A are holomorphic, then
f+g: U — A is holomorphic.
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